
Randomized Positioning DSSS for Anti-Jamming
Wireless Communications

Ahmad Alagil, Meshari Alotaibi, Yao Liu
{alagil, meshari}@mail.usf.edu, yliu@cse.usf.edu
University of South Florida, Tampa, FL 33620

Abstract—Traditional anti-jamming approaches like Fre-
quency Hopping Spread Spectrum (FHSS) and Direct Sequence
Spread Spectrum (DSSS) require the sender and the receiver
to share a secret key prior to their communication. If this key
is compromised by the jammer, the jammer can then generate
the frequency hopping patterns or the spreading codes used
by the communicators to disrupt the wireless communication.
In recent years, DSSS based schemes have been proposed to
provide the anti-jamming communication without the shared
key. In particular, Randomized Differential DSSS (RD-DSSS)
was developed to spread messages based on the indices of
public known spreading code sequences. RD-DSSS can effectively
mitigate reactive jamming attacks and do not need a shared
key, but it appends the indices, which are critical to enable the
decoding at the receiver, to the end of the spread messages. As
a result, the indices can easily become the jamming target of
adversaries. To solve this problem, we propose the Randomized
Positioning DSSS (RP-DSSS) scheme that randomly relocate
the index codes for each message. Compared to RD-DSSS, the
randomization hides the indices from the adversaries and thus
achieves the enhanced security.

I. INTRODUCTION

Jamming attacks have been considered as a significant threat
to wireless communications in the past few decades. A jammer
can simply send noise signals over the wireless channel to
interfere the legitimate communications between the sender
and the receiver. As a result, the receiver cannot correctly
decode the original signals from the sender, and thus the
communication is blocked. To achieve the reliable wireless
communication, it is critical to provide wireless users with
the resilience against jamming attacks.

Spread spectrum techniques such as Frequency Hopping
Spread Spectrum (FHSS), and Direct Sequence Spread Spec-
trum (DSSS) have been used most frequently to defend against
jamming attacks (e.g., [4], [6], [7], [10]). In recent years,
researchers have been concerned that these techniques require
both the sender and the receiver to share a secret key, which
can make the anti-jamming system vulnerable [7]. For exam-
ple, in FHSS, the sender and the receiver avoid the interference
caused by jamming attacks through switching to different
channels from time to time. These channels are random and
generated using a shared secret key. If the attacker knows this
key, she can then switch to the same channels to jam the FHSS
communication. In DSSS, both the sender and the receiver
achieve the anti-jamming purpose by spreading the original
message using spreading codes, which are selected based on a
shared key. If the attacker knows the key and accordingly the

spread codes, she can spread a random message and send it
along with the transmission of the original message to confuse
the despreading at the receiver.

Due to the security concern of the shared key, some research
has been done to remove the requirement of a pre-share
key for anti-jamming communication systems (e.g., [1], [5],
[9], [10]. In particular, Popper et al. proposed the Uncoordi-
nated DSSS (UDSSS) schemes that enable the anti-jamming
communication without a shared secret key [7]. The sender
randomly picks spreading code sequences from a set of public
code sequences to encode messages. However, if the jammer
has enough computational power to infer the spreading code
sequences chosen by the sender before the transmission is
complete, the jammer can then jam the rest of the message
transmission.

To overcome this problem, Randomized Differential DSSS
(RD-DSSS) scheme was proposed [4]. The sender spreads
messages based on the indices of the public spreading code
sequences, and the receiver uses these indices to identify
the spreading code sequences chosen by the sender for de-
spreading. The indices are randomly chosen among a public
pseudorandom code set and thus they are refereed as index
codes. Although RD-DSSS can effectively mitigate the afore-
mentioned attacks against UDSSS and do not need a shared
key, it is still vulnerable to attacks. The index codes are
essential to enable the despreading at the receiver and they
are appended at the end of the spread messages. As such,
they easily become the jamming target of adversaries.

In this paper, we propose the Randomized Positioning DSSS
(RP-DSSS) scheme as an extension to improve the security of
RD-DSSS. The vulnerability of index codes roots from the fact
that they are located at a fixed position of a spread message
(i.e., end of the message). The fixed position makes them
completely exposed to the adversaries. To protect index codes,
we therefore propose to randomly relocate the index codes for
each message. Specifically, we insert the index codes into a
random position of a spread message instead of appending it
at the end of the spread message. To enable the receiver to find
the position of the index code, we design an “onion” spreading
mechanism that treats this random position as the payload of a
new message and encodes them using RP-DSSS in a recursive
way. The receiver can de-spread the received messages by
applying the reverse operations done by the sender. To remove
the requirement of a shared key, similar to RD-DSSS, we also
take advantage of public sets of spreading codes and code

2016 International Conference on Computing, Networking and Communications, Communications and Information Security

978-1-4673-8579-4/16/$31.00 ©2016 IEEE

sequences. For an original message, the sender and the receiver
use a random code sequence from the set of code sequences
to spread and despread.

The contribution of this paper is three-fold. First, we iden-
tify the vulnerability on the index codes of the RD-DSSS
scheme. To mitigate this vulnerability, we accordingly propose
the RP-DSSS scheme that places index codes at random posi-
tions of a spread message to prevent adversaries discovering
these index codes. Second, we develop the techniques that
can inform the receiver the positions of index codes in the
presence of jammers, and we integrate this technique into
the RD-DSSS to achieve a security enhanced anti-jamming
system, which does not require the shared secret keys. Third,
we perform computer simulations to validate the performance
of the proposed approaches.

The rest of this paper is organized as follows. Section II
discusses the background information on DSSS. Section III
presents the proposed RP-DSSS scheme. Section IV provides
the performance evaluation results. Sections V and VII de-
scribe the related work and conclude this paper, respectively.

II. BACKGROUND ON DSSS

DSSS is a modulation method applied to digital signals [2].
It increases the signal bandwidth to a value much larger than
needed to transmit the underlying information [2]. In DSSS,
spreading codes that are independent of the original signal
are used to achieve the goal of bandwidth expansion. Both
a sender and a receiver agree on a spreading code, which is
regarded as a shared secret between them. A spreading code
is usually a sequence of bits valued 1 and −1 (polar) or 1 and
0 (non-polar), which has noise-like properties. In this paper,
without loss of generality, we consider spreading codes with
polarity. Typical spreading codes are pseudo-random codes,
Walsh-Hadamard codes and Gold codes [8].

Spreading and de-spreading are two important functions of
a DSSS system. In spreading, a sender multiplies each bit of
the original message with a spreading code to get the spread
message. For example, if the original message is “01” and the
spreading code is −1 + 1 + 1 − 1, then the sender converts
the original message “01” into the polar form −1 + 1, and
multiplies −1 and +1 with spreading code −1 + 1 + 1 − 1,
respectively. The spread message is thus +1−1−1+1−1+
1 + 1− 1.

It is necessary to understand the notion of correlation to
see how de-spreading works. Given two spreading codes
f = f1, .., fk and g = g1, .., gk, where fi and gi are
valued −1 or 1 for 1 ≤ i ≤ k, the correlation of f and
g is f · g = 1

k

∑k
i=1 figi. Note that the correlation of two

identical spreading codes is 1. In de-spreading, the receiver
uses a local replica of the spreading code and synchronizes it
with the received message [8]. Then the receiver correlates
the received message with the replica to generate the de-
spreading output. For example, suppose the received message
is +1 − 1 − 1 + 1 − 1 + 1 + 1 − 1 and the local replica of
the spreading code is −1+1+1− 1 at the receiver side. The
receiver aligns −1 + 1 + 1 − 1 with the first 4 chips of the

received message (i.e., +1 − 1 − 1 + 1) and correlates them
to get bit −1 (i.e., “0” in non-polar form).

DSSS allows receivers to reconstruct the desired signal
with efficiency and at the same time distributes the energy
of wireless interferences (e.g., narrow band jamming signals)
to the entire bandwidth. Therefore, DSSS provides good anti-
jam protection for wireless communications.

III. RANDOMIZED POSITIONING DSSS

Similar to DSSS, RP-DSSS achieves the anti-jamming ca-
pability by using spreading codes to obtain the spreading gain.
However, unlike DSSS, RP-DSSS relies on the correlation
between two spreading codes to encode each bit of an orig-
inal message. Pre-shared keys are not required for RP-DSSS
communications. Because RP-DSSS is an extension of the
RD-DSSS scheme, we first introduce how RD-DSSS works
to facilitate readers’ understanding, and then we present our
proposed RP-DSSS scheme.

A. Basic Scheme of RD-DSSS

We assume that both the sender and the receiver share a set
of spreading codes. According to the property of spreading
codes, the auto-correlation between two identical codes is
high, and the cross-correlation between two different codes
is low. The sender encodes each bit of the message separately.
Specifically, bit “0” is encoded using a pair of different
codes and bit “1” is encoded using a pair of identical codes.
The receiver decodes the spread message by calculating the
correlation between two codes. If the result of the correlation
is high, then the encoding of the corresponding bit uses
two identical codes and thus the recovered bit is “1”. If the
correlation result is not high, then the recovered bit is “0”
because two different codes are used. The codes are randomly
chosen from the spreading codes set.

Spreading: Figure 1 demonstrates an example of the RD-
DSSS scheme. The original message M is 1010. The sender
randomly chooses four codes from the spreading code set to
decode M . Let p1 ,p2, p4, and p8 denote these codes. The first
bit of M is 1, the sender repeats using p1. The second bit is
0, the sender randomly picks a different spreading code from
the code set. Assume p3 is selected. The rest of bits in M
can be encoded in the same way and the spreading outcome
is p1||p2||p4||p8||p1||p3||p4||p5.

De-spreading: The receiver calculates the correlation be-
tween the i-th and i + L-th codes in a received message,
where L is the length of the message. In this example, the
receiver computes cor(p1, p1), cor(p2, p3), cor(p4, p4), and
cor(p8, p5), and converts the correlation output to bit 1 or 0.

RD-DSSS reduces the communication overhead by using
spreading code sequences, which are also publicly known. A
spreading code sequence is formed by concatenating the codes
from the spreading code set, and is associated with an index
code, which is a pseudorandom noise (PN) code to identify
the spreading code sequence chosen by the sender. The index
codes also form an index code set. As shown in Figure 1,
the sender randomly chooses a spreading sequence from the

Code Set {p1, p2,….}

Original

message 1 0 1 0

Spreading P1 P2 P4 P8

!" !# !$!%

!" !& !$!'

H L H L

De-spreading

Correlations

Spread message

Sequence of codes

index code set {c1,c2}

 c1: P1 || P3 || P4 || P5,

 c2: P6,|| P3 || P8 || P9,

Spread message A sequence of codes

P1 P3 P4 P5

Fig. 1: The Basic scheme of DSSS

spreading sequence set and it is the sequence p1||p3||p4||p5.
The sender then spreads the message using this sequence and
appends the index code c1 to the end of the spreading result,
and thus the ultimate spreading output is p1||p2||p4||p8||c1.

B. The Limitation

As mentioned earlier, RD-DSSS scheme has an obvious
limitation. The index codes are always appended to the end of
the message. This makes them easily become the target for the
attacker. The attacker can compute the correlation between the
subsequence formed by the first several bits of the index code
and those of all possible index codes to identify which index
code was selected by the sender. The attacker can jam the
rest of the index codes by simply transmitting multiple index
codes to deceive the receiver to obtain multiple possibilities
of the index code, thereby boosting the computational cost for
de-spreading at the receiver.

C. RP-DSSS

We create a new technique to overcome the limitation of the
RD-DSSS. Intuitively, the spreading codes have the random-
look because they are indeed generated by pseudorandom
generators [8], and naturally a message spread by these codes
exhibit the randomness as well. Thus, inserting a pseudoran-
dom index code at any positions of a spread message would
still make the entire message look like a random sequence of
−1 and +1. We hence propose to randomly relocate the index
codes. For each spread message, we insert the corresponding
index code into a random position, and the random-looking
property of the spread message enables the camouflage of the
index code.

Onion spreading: An important by-product question is
how can the receiver identify the index codes, such that it
can find the corresponding spreading code sequence for the
de-spreading. The receiver and the adversary have the same
knowledge about a spread message. It seems if the index code
is hidden from the adversary, then it is also hidden from the
receiver. Nevertheless, the communication roles of the receiver
and the adversary are totally different. The receiver aims to
correctly decode a message after the message is received,
whereas the adversary aims to jam the message before the
message transmission is complete. Thus, compared with the
receiver, the adversary has the timing constraint, i.e., it must

jam the message within the message transmission time. In
contrast, the receiver can buffer received data content and then
take time to despread.

Based on this observation, we herein propose the idea of
“onion” spreading, in which we treat the index code as a new
message and spread it using the RP-DSSS recursively. The
jammer has to exhaustively try all the possible positions of all
messages to identify the index code before the transmission
completes, while the receiver has no such a time constraint.
Moreover, the exhaustive search is not imposed at the receiver,
because all index codes are revealed upon the finish of the
transmission. Assume that the original message is of m bits.
The index code can be inserted into m positions, and thus the
length of the second new message is log2m. The spreading
of the second new message also results in a new index code,
which yields a third new message of length log2(log2m). In
this way, we can generate multiple new messages of lengths
m, log2m, log2(log2m),..., and 1. How do we transmit the
original and all additional new messages in the presence of
jamming?

Although the message length gets smaller, the message itself
becomes more important for the despreading. Because the
correct despreading of the i-th message will rely on the correct
despreading of the next (i.e., i+1-th) message. For security, we
adopt different levels of spreading codes. Specifically, code
sets P1, P2,..., and Pn are used to spread the first, second, ...,
and the n-th message, where the code set Pi contains stronger
spreading codes of a higher spreading gain than the codes in
the set Pi−1. To achieve this, the length of a code in Pi should
be larger than that of a code in Pi−1. Note that the probability
that an arbitrary position holds the index code increases as the
message length decreases. We thus pad additional bits to each
message to restrain this probability under a desired value. In
what follows, we present the details of the presented scheme.

Spreading code sets and code sequence set: Both the
sender and the receiver share multiple sets of the spreading
codes and spreading code sequences. Let {P1,P2, ...,Pn}
denote the publicly known spreading code sets. In this paper,
we assume that fi ≥ fi−1, where fi is the code length for the
code set Pi. RP-DSSS does not limit to certain spreading codes
and any type of spreading codes can be adopted as long as it
has the low cross-correlation property. Typical codes include
Walsh-Hadamard codes and Gold codes [8]. Let C1, C2, ..., Cn
denote the sets of code sequences. Ci is used to spread the i-th
message and each element of Ci is formed by the concatenation
of spreading codes from Pi. Assume that the length of the i-th
message is li. Ci can be represented by Ci = pi1 ||pi2 ||...||pilk .
Each code sequence is associated with an index code, and we
use I1, I2, ..., In to represent the index code sets that identify
the code sequences for C1, C2, ..., Cn.

Spreading: As an example shown in Figure 2, the orig-
inal message M to be sent is of 128 bits and we use
m1||m2||, ..., ||m128 to represent M . To generate the first
spread message M1, the sender randomly picks a code se-
quence from C1. According to the chosen code sequence, the
sender creates the spreading result in a way that is similar

to RD-DSSS, i.e., two identical codes are used to spread “1”
and two different codes are used to spread “0”. The original
message M has 128 bits and thus M1 is formed by 128
spreading codes from C1. In this example, the length of the
first message M1 is 128. The sender inserts the index code of
M1 after the 127-th spreading code. So the insertion position
POS1 = 0111111. The second message M2 is thus generated
by spreading POS1 using the code sequence set C2. The length
of M2 is 7 (i.e., log2 128). The sender inserts the index code
of M2 after the 4-rd spreading code and POS2 = 100.

c

1 1 0 . . . 0 1M

.

a spread message a sequence of code

. . .

P

Index code set = { ,

=

=
bit bit bit bit bit
1 2 3 … 127 128

Fig. 2: Randomized Postioning DSSS

De-spreading: The receiver receives messages M1, M2,
M3, M4, and M5. To recover the original message, the receiver
despreads the last message M5 first and the despreading order
is reverse to the spreading order. To despread message Mi,
the receiver needs to know two main things: (1) the position
of the index code, and (2) the code sequence that was used
to spread Mi. As shown in Figure 2, M5 is spreaded by
one spreading code, which indicates POS4. In this example,
POS4 represents two possibilities and it is either 1 or 0. After
POS4 is identified, the receiver can obtain the index code
and then continues to despread M4. Assume that the obtained
index code in M4 is ĉ. The receiver computes the correlation
between each index code in I4 and ĉ, finds the index code that
can result in the highest correlation with ĉ, and uses the code
sequence that is associated with this index code to despread
M4.

Let D = d1||d2||...||d1 denote the spreading code sequence
identified by the sender. Further let S = s1||s2||...||sl denote
the concatenation of the spreading codes in M4. The receiver
calculates the correlation between S and D (i.e., cor(s1, d1),
cor(s2, d2),..., cor(sl4 , dl4)) to find the index code of M3. If
cor(si, di) is greater than a empirically per-defined threshold t,

then the recover bit is 1. Otherwise, the recovered bit is 0. The
recover message leads to the reveal of POS3, which can be
used to despread M3. In a similar way, the receiver identifies
POS2 and POS1 to despread M2 and M1, respectively.

Security enhancement by padding: As mentioned earlier,
due to the decreased message length, the probability that the
jammer can find the index codes increases as we approach to
the end of the message chain. We propose to pad additional
spreading codes to the end of spread messages to control this
probability. Specifically, for the i-th message Mi, we randomly
select LPi codes from the spreading code set Pi and pad them
to the end of Mi. The index code can be inserted between any
two consecutive spreading codes of the padded Mi. Lemma 1
gives the probability that an arbitrary insertion position (i.e.,
the position between two consecutive spreading codes) points
to the beginning of the index code.

Lemma 1. Assume insertion positions are equally likely to
be inserted with the index codes. For 1 ≤ i ≤ n, the
probability Pi that an arbitrary insertion position of the i-
th message Mi points to the beginning of the index code is

1
log2(Li−1+LPi−1

)+LPi
, where Li−1 is the number spreading

codes in the i−1-th message Mi−1 before padding (L0 is the
number binary bits in the original message M), LPi−1 and
LPi

are the numbers of spreading codes padded to the end of
Mi−1 and Mi respectively.

Proof. Mi−1 is spreaded by Li−1 spreading codes and LPi−1

additional padding codes are appended to the end of Mi−1.
Thus, the total number of spreading codes in Mi−1 is
Li−1 + LPi−1

. The index code can be inserted between any
two consecutive spreading codes of Mi−1, and thus the total
number of candidate insertion positions is Li−1 + LPi−1 ,
which leads to the next i-th message Mi that is composed by
log2(Li−1+LPi−1

) spreading codes. After padding extra LPi

spreading codes to the end of Mi, the message size increases
to log2(Li−1+LPi−1

)+LPi
. Because an index code is inserted

into the candidate insertion positions with equal probability,
the probability Pi is therefore 1

log2(Li−1+LPi−1
)+LPi

.

To find how many spreading codes should be padded, the
sender can treat the padded bits LPi

as the unknown variable
and solve it from Pi ≤ tp, where tp is the desired upper bound
of Pi. Note that LPi = 0 indicates that no additional spreading
codes are padded into Mi, and the security enhancement
scheme degenerates to the original one without padding. Fig-
ure 3 plots the impact of the number LPi

of padded spreading
codes on the probability Pi. The original message length is set
to 128 and LPi

ranges between 10% and 100% of the original
message length. We can see that Pi significantly decreases as
the number of padded spreading codes increases. In particular,
for the last message M5, Pi = 0.0015 when the number of
padded spreading codes is equal to the length of the original
message.

Despreading cost: To despread, the receiver starts from
the last received message Mn to identify the index code of
Mn−1. Mn consists of Ln−1+LPn spreading codes, and thus

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

The percentage of padded spreading codes

P
ro

b
a

b
ili

ty

M
1

M
2

M
3

M
4

M
5

Fig. 3: Pi as a function of the number of padded spreading
codes.

the receiver needs to examine Ln−1 +LPn positions, each of
which yields a potential index code. To verify, the receiver
correlate a potential index code with all the codes in In and
a high correlation value that pass a certain threshold suggests
a correct index code. We point out that the decoding cost of
the index codes depends on the length of Mn. A large LPn

of
padded spreading codes leads to high level of security (low P)
but an increased decoding cost. Thus, LPn should be carefully
controlled to satisfy the trade-off between security and the
decoding cost.

Because the decoding cost depends on the number of
spreading codes in Mn, we quantify the decoding cost using
the ratio of the number of candidate positions in Mn to the
length L0 of the original message. This quantization will
enable us to observe how much spreading cost is required
as compared to a naive RD-DSSS improvement, which does
not advocate the “onion” spreading but simply inserts the
index code into a random position of a spread message.
The decoding cost for this extension is thus the number of
spreading codes in the spread message, and it is exactly the
length of the original message. Figure 4 shows the jamming
probability as a function of the decoding cost, we can see that
RP-DSSS can reduce the probability P to small values while
maintaining a low decoding cost compared to the naive RD-
DSSS improvement. For example, with a spreading cost that
is only 20% of that of the naive RD-DSSS improvement, the
probability P is smaller than 0.02 and 0.04 for message length
of 128 and 256, respectively.

IV. SIMULATION RESULT

We performed computer simulations using MATLAB to
validate the performance of RP-DSSS. The Type I attack
discussed in RD-DSSS causes the worst probability for a
message being jammed. Thus, we consider the Type I attack in
our simulation. In Type I attacks, the jammer randomly selects
codes from the code set, and transmits them to interfere with
the original message transmission. A type I attacker cannot
flip a bit of 1 to 0, because no matter which code it transmits,

0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

0.1

Despreading cost

P
ro

b
a

b
ili

ty

L
0
 = 128

L
0
 = 256

Fig. 4: Pi v.s. the despreading for message length L0 of 128
and 256.

two identical codes are always involved in the despreading
process and the correlation is always high. Nevertheless, the
attacker can flip a bit of 0 to 1. Let ps1 and ps2 denote the i-th
codes of a spread message and the corresponding spreading
code sequence respectively, where ps1 6= ps2 . Further let pa1

and pa2 denote the i-th codes transmitted by the jammer along
with the transmissions of ps1 and ps2 . We can see that a high
correlation can be caused if pp1

= pa1
, or pp2

= pa1
, or

pp1
= pa2

, or pp2
= pa2

. If any of the four conditions holds,
0 is decoded as 1 and a bit error occurs. In practice, a few
bit errors can be tolerated by ECC. For example, the standard
(255, 223) Reed-Solomon code is capable of correcting up to
16 bit errors among every 223 information bits of a message
[11]. If the ECC can correct a maximum of δ bit errors of
the original message but the jammer can flip more than δ bits,
then jammer is successful and the receiver cannot reconstruct
the original message.

In our simulation, we set the padded spread message lengths
to be 64 and 128, and set the error correction code capability
ECCCap to be 1% - 3%, which means that the number
of tolerable bit errors is 1% − 3% of the message length.
Specifically, ECCCap = 1% for length-128 message and
ECCCap = 3% for length-64 message. We perform 500 trials.
In each trial, we spread the message by picking a random
code sequence from C. We also generate random codes for
the jammer. To calculate the probability that the message to
be jammed, we count the number of error bits that affected
by the jammer. If this number is larger than ECCCap × L0,
then the trial is considered as failed. The probability that the
message is jammed is finally calculated by number of failed trials

total number of trials .
Figure 5 shows the simulation results for RP-DSSS. The
jamming probability decreases significantly as the code set
size increases. In particular, the jamming probability is around
0.01 for the code set size of 60.

V. RELATED WORK

The jamming problem in wireless communication has been
widely studied during the past few decades, and spread spec-

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

Size of code set

P
ro

b
a

b
ili

ty
 o

f
b

e
in

g
 j
a

m
m

e
d

 L
0
 = 64

 L
0
 = 128

Fig. 5: The probability that the attacker jams the communi-
cation when the length of the message is 64 and 128 bits
respectively.

trum such as DSSS and FHSS are traditional anti-jamming
techniques [8]. However, as discussed earlier, those tech-
niques require that senders and receivers to pre-share secret
keys. Some researchers recently investigated how to enable
jamming-resistant broadcast communication without shared
keys [1], [4], [7]. Baird et al. proposed a coding approach
to encode data to be transmitted into “marks” (e.g., short
pulses at different times) that can be decoded without any prior
knowledge of keys [1]. Although this method works efficiently
with short pulses in the time domain, it cannot be directly
extended to DSSS or FHSS systems [4]. To support FHSS
systems, Strasser et al. proposed Uncoordinated Frequency
Hopping (UFH) schemes ([9], [10]) that allow the sender
and the receiver that do not share a secret key to establish the
jamming resilient wireless communication.

UDSSS and RD-DSSS proposed in [7] and [4] respectively
are the most relevant schemes to ours. UDSSS randomly
selects a spreading code sequence from a publicly known set
to spread a message, and the receiver uses exhaustive search to
identify the chosen sequence for despreading. As mentioned
earlier, UDSSS faces an obvious vulnerability, i.e., once the
jammer figures out the single chosen spreading code sequence,
it can then jam the rest of the message transmission. Inspired
by UDSSS, RD-DSSS tolerates this type of reactive jamming
attacks by exploiting the correlations between spreading codes,
but the index codes involved in essential despreading opera-
tions can easily become the target of adversaries. To improve
the security of RD-DSS, we propose RP-DSSS to fix the open
issue of index codes by randomizing the positions of these
codes.

Recent work also consider the threats from broadband
jammers, who can jam all frequency channels simultaneously
and have a high transmit power to overcome the spreading
gain. Specifically, Xu et al. proposed to use timing-based
covert channels to address broadband jammers [12]. The
covert channels are constructed by linking the inter-arrival
times of a sender’s corrupted packets to information bits. In

addition, BitTrickle schemes are proposed by [3] to establish
the wireless communication in the presence of a broadband
reactive jammer. The basic idea is to utilize the short time
delay caused by the channel sensing of a reactively jammer to
deliver information bits. The receiver may collect information
bits from the unjammed parts of received packets and assemble
these bits together to obtain a meaningful message. All these
approaches are complementary to ours.

VI. ACKNOWLEDGEMENT

This work is supported by the Army Research Office under
grant W911NF-14-1-0324.

VII. CONCLUSION

In this paper, we propose the RP-DSSS scheme to enhance
the security of RD-DSSS. Instead of placing an index code at
a fixed location, we hide the index code by inserting it at a
random position of a spread message. To enable the receiver
to find the position of the index code, we design an “onion”
spreading mechanism, which recursively encodes the random
positions using RP-DSSS, and pads additional spreading codes
to reduce the probability that a jammer can infer these random
positions. To achieve the anti-jamming without shared key,
the spreading and despreading operations of RP-DSSS totally
utilize publicly known sets of spreading codes and code
sequences. We performed computer simulations to validate the
performance of the proposed approaches.

REFERENCES

[1] L. C. Baird, W. L. Bahn, M. D. Collins, M. C. Carlisle, and S. C.
Butler. Keyless jam resistance. In Information Assurance and Security
Workshop, 2007. IAW’07. IEEE SMC, pages 143–150. IEEE, 2007.

[2] A. Goldsmith. Wireless communications. Cambridge university press,
2005.

[3] Y. Liu and P. Ning. Bittrickle: Defending against broadband and high-
power reactive jamming attacks. In Proceedings of the 2012 IEEE
INFOCOM, 2012.

[4] Y. Liu, P. Ning, H. Dai, and A. Liu. Randomized differential dsss:
Jamming-resistant wireless broadcast communication. In INFOCOM,
2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[5] Y. H. Oh and D. J. Thuente. Enhanced security of random seed dsss
algorithms against seed jamming attacks. In Global Communications
Conference (GLOBECOM), 2012 IEEE, pages 801–806. IEEE, 2012.

[6] R. Poisel. Modern Communications Jamming: Principles and Tech-
niques. Artech House, 2011.

[7] C. Pöpper, M. Strasser, S. Capkun, S. Capkun, and S. Capkun. Jamming-
resistant broadcast communication without shared keys. In USENIX
security Symposium, pages 231–248, 2009.

[8] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt. Spread
Spectrum Communications Handbook, Revised Edition. New York:
McGraw-Hill, Inc., 1994.

[9] M. Strasser, S. Capkun, and M. Cagalj. Jamming-resistant key establish-
ment using uncoordinated frequency hopping. In Security and Privacy,
2008. SP 2008. IEEE Symposium on, pages 64–78. IEEE, 2008.

[10] M. Strasser, C. Pöpper, and S. Čapkun. Efficient uncoordinated fhss anti-
jamming communication. In Proceedings of the tenth ACM international
symposium on Mobile ad hoc networking and computing, pages 207–
218. ACM, 2009.

[11] S.B. Wicker and V.K. Bhargava. Reed-Solomon Codes and Their
Applications. IEEE Press, 1994.

[12] W. Xu, W. Trappe, and Y. Zhang. Anti-jamming timing channels
for wireless networks. In WiSec ’08: Proceedings of the first ACM
conference on Wireless network security, pages 203–213, New York,
NY, USA, 2008. ACM.

